1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 package com.google.common.math;
18
19 import static com.google.common.math.MathBenchmarking.ARRAY_MASK;
20 import static com.google.common.math.MathBenchmarking.ARRAY_SIZE;
21 import static com.google.common.math.MathBenchmarking.RANDOM_SOURCE;
22 import static java.math.RoundingMode.CEILING;
23
24 import com.google.caliper.BeforeExperiment;
25 import com.google.caliper.Benchmark;
26 import com.google.caliper.Param;
27 import com.google.common.math.BigIntegerMath;
28 import com.google.common.math.IntMath;
29 import com.google.common.math.LongMath;
30
31 import java.math.BigInteger;
32
33
34
35
36
37
38 public class BigIntegerMathBenchmark {
39 private static final int[] factorials = new int[ARRAY_SIZE];
40 private static final int[] slowFactorials = new int[ARRAY_SIZE];
41 private static final int[] binomials = new int[ARRAY_SIZE];
42
43 @Param({"50", "1000", "10000"})
44 int factorialBound;
45
46 @BeforeExperiment
47 void setUp() {
48 for (int i = 0; i < ARRAY_SIZE; i++) {
49 factorials[i] = RANDOM_SOURCE.nextInt(factorialBound);
50 slowFactorials[i] = RANDOM_SOURCE.nextInt(factorialBound);
51 binomials[i] = RANDOM_SOURCE.nextInt(factorials[i] + 1);
52 }
53 }
54
55
56
57
58 private static BigInteger oldSlowFactorial(int n) {
59 if (n <= 20) {
60 return BigInteger.valueOf(LongMath.factorial(n));
61 } else {
62 int k = 20;
63 return BigInteger.valueOf(LongMath.factorial(k)).multiply(oldSlowFactorial(k, n));
64 }
65 }
66
67
68
69
70 private static BigInteger oldSlowFactorial(int n1, int n2) {
71 assert n1 <= n2;
72 if (IntMath.log2(n2, CEILING) * (n2 - n1) < Long.SIZE - 1) {
73
74 long result = 1;
75 for (int i = n1 + 1; i <= n2; i++) {
76 result *= i;
77 }
78 return BigInteger.valueOf(result);
79 }
80
81
82
83
84
85 int mid = (n1 + n2) >>> 1;
86 return oldSlowFactorial(n1, mid).multiply(oldSlowFactorial(mid, n2));
87 }
88
89 @Benchmark int slowFactorial(int reps) {
90 int tmp = 0;
91 for (int i = 0; i < reps; i++) {
92 int j = i & ARRAY_MASK;
93 tmp += oldSlowFactorial(slowFactorials[j]).intValue();
94 }
95 return tmp;
96 }
97
98 @Benchmark int factorial(int reps) {
99 int tmp = 0;
100 for (int i = 0; i < reps; i++) {
101 int j = i & ARRAY_MASK;
102 tmp += BigIntegerMath.factorial(factorials[j]).intValue();
103 }
104 return tmp;
105 }
106
107 @Benchmark int binomial(int reps) {
108 int tmp = 0;
109 for (int i = 0; i < reps; i++) {
110 int j = i & 0xffff;
111 tmp += BigIntegerMath.binomial(factorials[j], binomials[j]).intValue();
112 }
113 return tmp;
114 }
115 }